ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Системы оптические измерительные FTB-2 (Pro)

Назначение средства измерений

Системы оптические измерительные FTB-2 (Pro) предназначены для измерений ослабления, длины (расстояния) до мест неоднородностей, оценки неоднородностей оптического кабеля, измерений длины волны и проведения анализа оптического спектра, измерений поляризационной модовой (ПМД) и хроматической дисперсии (ХД), формирования цифрового измерительного сигнала с заданной тактовой частотой и измерений частоты на электрических и оптических интерфейсах, измерений средней мощности и ослабления оптического излучения в волоконно-оптических кабелях и оптических компонентах (в зависимости от модуля).

Описание средства измерений

Принцип действия систем оптических измерительных FTB-2 (Pro) (далее по тексту - системы) с модулями FTB-7200x, FTB-7300x, FTB-7400x, FTB-7500x, FTB-7600x, FTBx-720C, FTBx-730C, FTBx-735C, FTBx-740C, FTBx-750C основан на зондировании волоконно-оптической линии последовательностью коротких оптических импульсов и измерении параметров сигнала, отраженного от неоднородности, и сигнала обратного рассеяния, т.е. сигналов френелевского отражения и релеевского рассеяния. В результате обработки этих сигналов на дисплее прибора формируется рефлектограмма зондируемого световода, показывающая распределение ослабления по его длине и индицирующая наличие стыков и обрывов.

Принцип действия систем с модулями FTB-5230S, FTB-5240S основан на выделении спектральных составляющих оптического излучения, поступающего на вход монохроматора для фильтрации каналов WDM-систем с высоким оптическим разрешением и точным выбором соответствующих длин волн и последующей обработки полученной информации для воспроизведения на экране.

Принцип действия систем с модулями FTB-5700 основан на зондировании волоконнооптической линии широкополосным оптическим излучением с изменяющимся состоянием поляризации и измерением времени задержки скорости распространения оптического излучения в волокне для каждой длины волны отраженного сигнала.

Принцип действия систем с модулями FTB-8805, FTB-8830NGE, FTBx-8870, FTBx-8880, FTB-88100G, FTB-88100NGE, FTBx-88200NGE основан на воспроизведении встроенным генератором эталонной частоты, формировании цифровых сигналов с заданной тактовой частотой и логического сравнения принимаемого цифрового сигнала с формируемым сигналом. Поддержка сменными модулями тестовых функций указана в таблице 1.

Системы с модулями FTB-3930 представляют собой тестер оптический, который включает в себя порты измерителя оптической мощности и источник оптического излучения, выполненные в едином малогабаритном пластмассовом корпусе. Принцип действия измерителя мощности основан на преобразовании фотоприемником оптического сигнала в электрический с последующим усилением и преобразованием в цифровую форму. Источник оптического излучения основан на полупроводниковых лазерах или светодиодах. Серия FTB-3930 представлена моделями: FTB-3932, FTB-3932X, FTB-3933 со «стандартной» моделью лазерного одномодового источника излучения с длинами волн 1310 и 1550 нм; FTB-3932-4, FTB-3932X-4, FTB-3933-4 с лазерным одномодовым источником излучения «4» с длинами волн 1310, 1550 и 1625 нм; FTB-3932-5, FTB-3932X-5, FTB-3933-5 с лазерным одномодовым источником излучения «5» с длинами волн 1310, 1490 и 1550 нм. Также может присутствовать второй источник излучения - светодиодный многомодовый, модели 12С или 12D. Порт одномодового источника излучения используется также для измерений обратных потерь.

Системы выполнены в виде переносного прибора в прямоугольном корпусе. Основные элементы управления прибором расположены на сенсорном экране передней панели базового блока FTB-2. Прибор состоит из базового блока и сменных модулей. Базовый блок может быть выполнен в двух конфигурациях: FTB-2 и FTB-2 Pro. FTB-2 отличается от FTB-2 Pro тем, что не поддерживает измерительные модули FTB-88100G, FTB-88100NGE, FTBx-88200NGE. Базовый блок может быть опционально оснащен встроенным измерителем оптической мощности.

Общий вид систем оптических измерительных FTB-2 (Pro) представлен на рисунке 1.

Схема пломбировки от несанкционированного доступа, обозначение места нанесения знака поверки представлены на рисунке 2.

Рисунок 1 - Общий вид систем оптических измерительных FTB-2 (Pro)

Рисунок 2 - Схема пломбировки от несанкционированного доступа, обозначение места нанесения знака поверки

Таблица 1 - Поддержка сменными модулями тестовых функций

	FTB-8805	FTB-8830NGE	FTBx-8870	FTBx-8880	FTB-88100G	FTB-88100NGE	FTBx-88200NGE
Электрические ин	терфейсы	·	•		•		
E1	+	-	+	+	-	-	-
E3	+	1	-	+	-	-	-
STM-0e	+	-	-	+	-	-	-
E4	+	-	-	+	-	-	-
STM-1e	+	-	-	+	-	-	-
Ethernet 10M	-	+	+	+	-	+	+
Ethernet 100M	-	+	+	+	-	+	+
Ethernet 1000M	-	+	+	+	-	+	+
Оптические интер	фейсы						
STM-1	-	+	+	+	-	+	+
STM-4	-	+	+	+	-	+	+
STM-16	-	+	+	+	-	+	+
STM-64	-	+	+	+	-	+	+
STM-256	-	-	-	-	+	+	-
Ethernet 100M	-	+	+	+	-	+	+
GigEthernet	-	+	+	+	-	+	+
10GigEthernet	-	+	+	+	-	+	+
40GigEthernet	-	-	-	-	+	+	+
100GigEthernet	-	-	-	-	+	+	+

Программное обеспечение

Программное обеспечение (далее по тексту - ПО), входящее в состав системы, служит для выполнения функций определения параметров сигнала, сохранения и отображения на экране прибора информации в удобном для оператора виде. Результаты измерений могут быть сохранены на флеш-диске (64 или 128 Гбайт).

Метрологически значимая часть ПО располагается в аппаратной части системы. Имеется защита измеренных данных от удаления или изменения путем выдачи предупреждающего сообщения о возможности удаления данного файла, содержащего результаты измерений. Внесение изменений в файл, содержащий результаты измерений, функционально невозможно. Запись ПО осуществляется в процессе производства. Доступ к аппаратной части системы исключен конструктивно. В целях предотвращения вскрытия корпуса системы произведено пломбирование. Замена версии ПО с целью расширения сервисных возможностей системы может производиться только в аккредитованных сервисцентрах фирмы - изготовителя.

Уровень защиты программного обеспечения «высокий» в соответствии с Р 50.2.077-2014.

Таблица 2 - Идентификационные данные программного обеспечения

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	ToolBox X
Номер версии (идентификационный номер) ПО	2.2 и выше
Цифровой идентификатор ПО	-

Метрологические и технические характеристики

приведены в таблицах 3 - 17.

Таблица 3 - Метрологические характеристики систем со сменными модулями оптического рефлектометра серий FTB-7200x, FTBx-720C

Модификация модуля оптического рефлектометра серий FTB-7200D-023B FTB-7200D-12CD FTB-7200D-12CD FTBx-720C-SM1 FTBx-720C-SM2 FTBx-720C-Q1 FTBx-720C-Q1 QUAD	тического флектометра серий ТВ-7200х, FTВх-720С пп волокна
рефлектометра серий FTB-7200x, FTBx-720C Тип волокна Одномодовое 9/125 мкм Рабочие длины волн, нм При длительности измерений ослабления При длительности импульса 20 мкс: импульса Одномодовое 50/125; 50/125 мкм Одномодовое 50/125; 50/125 мкм Одномодовое 9/125 мкм Одномодовое 10/100 мкм Одномодовое 9/125 мкм Одномодовое 9/125 мкм Одномодовое 9/125 мкм Одномодовое 10/100 мкм Одномодовое 9/125 мкм Одномодовое 9/125 мкм Одномодовое 9/125 мкм Одномодовое 10/100 мкм Одномодовое 9/125 мкм	флектометра серий ГВ-7200х, FТВх-720С пп волокна бочие длины волн, нм
FTB-7200x, FTBx-720C Многомодовое Многомодовое Одномодовое Одномодово	СВ-7200х, FTBх-720С пп волокна бочие длины волн, нм
Тип волокна Одномодовое 9/125 мкм Многомодовое 50/125; 62,5 /125 мкм Одномодовое 9/125 мкм Многомодовое 50/125; 62,5 /125 мкм Одномодовое 9/125 мкм Одномодовое 50/125; 62,5 /125 мкм Одномодовое 50/125; 62,5 /125 мкм Одномодовое 9/125 мкм	пп волокна
9/125 мкм 50/125; 50/125; 62,5/125 мкм Одномодовое 9/125 мкм Рабочие длины волн, нм (1310/1550)±20 (850/1300/1310/1550)±20 (850/1300/1310/1550)±20 (1310/15	бочие длины волн, нм
62,5 / 125 мкм	
Рабочие длины волн, нм (1310/1550)±20 (850/1300/1310/ 1550)±20 (850/1300)±20 (1310/1550)±20 (1310/1550)±20; (850/1300)±20 (850/1300/1310/ 1625±10 (с фильтром) (1310/1550)±20; (850/1300)±20 (1310/1550)±20; (850/1300)±20 (1310/1550)±20; (1310/1550)±20; (1310/1550)±20; (1310/1550)±20; (1310/1550)±20; (1310/1550)±20 (1310/1550)±20; (1	
Рабочие длины волн, нм	
Рабочие длины волн, нм (1310/1550)±20 (850/1300/1310/ 1550)±20 (850/1300)±20 (1310/1550)±20 (1310/1550)±20; 1625±10 (с фильтром) (850/1300)1310/ 1625±10 (850/1300/1310/ 1550)±20 Динамический диапазон измерений ослабления При длительности импульса При длительности импульса 1 мкс: При длительности длительности При длительности При длительности При длительности ности импульса	
1550)±20 1625±10 (с фильтром) 1550)±20 Динамический диапазон импульса 20 мкс: импульса импульса 1 мкс: длительности длительности длительности длительности длительности длительности ности импульса импульса 1 мкс: длительности длительности длительности ности импульса импульса 1 мкс: длительности длительности длительности длительности длительности ности импульса импульса 1 мкс: длительности дл	
1550)±20 1625±10 (с фильтром) 1550)±20 Динамический диапазон импульса 20 мкс: импульса импульса 1 мкс: длительности длительности длительности длительности длительности ности импуль	
Динамический диапазон При длительности импульса 20 мкс: импульса импульса 1 мкс: длительности длительности длительности длительности длительности длительности длительности ности импуль	vv
Динамический диапазон При длительности При длитель	
измерений ослабления импульса 20 мкс: импульса импульса 1 мкс: длительности длительности длительности ности импуль	инамическии диапазон
	мерений ослабления
(при усреднении 3 мин, 36/34 1 мкс (850/ 27/26 импульса импульса импульса 1 мкс (850/	
по уровню 98 % от 1300 нм): 27/26. 20 мкс: 34/33 20 мкс: 1 мкс: 25/27 1300 нм): 25/2	
максимума шумов)*, дБ При длительности З4 /33/33 При длительности	2.1
импульса 20 мкс	J J J J J J J J J J
(1310/1550 нм): 20 мкс (1310/	
36/34 1550 HM): 34/	
Мертвая зона при измере-	ертвая зона при измере-
нии, м:	ш, м:
- ослабления 4,5/5 3/4/4,5/5 3/4 3/3 3/3/3 3/3/3/3	слабления
- положения 1/1 1/1/1 1/1 0,7/0,7 0,7/0,7 0,6/0,6 0,6/0,6/0,7/	оложения
неоднородности	однородности
Длительность зондирую- 5; 10; 30; 100; 275; - на длинах волн 5; 10; 30; 100; 275; 5; 10; 30; 100; 275; 5; 10; 30; 100; 275; - на длинах волн -	пительность зондирую-
щих импульсов, нс 1000; 2500; 10000; 850/1300 нм: 5; 1000 1000; 2500; 1000; 2500; 850/1300 нм: 5; 850/1300 нм:	их импульсов, нс
20000	•
1000;	
- на длинах волн	
1310/1550 нм: 5; 1310/1550 нм	
10; 30; 100; 275;	
1000; 2500; 10000;	
20000 10000; 20000	

Модификация модуля	FTB-7200D-023B	FTB-7200D-	FTB-7200D-12CD	FTBx-720C-SM1	FTBx-720C-SM2	FTBx-720C-Q1	FTBx-720C-Q1-	
оптического		12CD-23B					QUAD	
рефлектометра серий FTB-7200x, FTBx-720C								
Диапазоны измеряемых	0 - 1,25; 0 - 2,5;	- на длинах волн	0-0,1; 0-0,3;	0 - 1,25; 0 - 2,5;	0 - 1,25; 0 - 2,5;	0-0,1; 0-0,3;	- на длинах волн	
длин, км	0 - 5; 0 - 10; 0 - 20;	850/1300 HM:	0 - 0,5; 0 - 1,3;	0 - 5; 0 - 10;	0 - 5; 0 - 10;	0 - 0,5; 0 - 1,3;	850/1300 HM:	
	0 - 40;	0-0,1; 0-0,3;	0 - 2,5; 0 - 5;	0 - 20; 0 - 40;	0 - 20; 0 - 40;	0 - 2,5; 0 - 5;	0-0,1; 0-0,3;	
	0 - 80; 0 - 160;	0 - 0,5; 0 - 1,3;	0 - 10; 0 - 20; 0 - 40	0 - 80; 0 - 160; 0 - 260	0 - 80; 0 - 160;	0 - 10; 0 - 20; 0 - 40	0 - 0,5; 0 - 1,3;	
	0 - 260	0 - 2,5; 0 - 5; 0 - 10; 0 - 20; 0 - 40;	0-40	0 - 200	0 - 260	0-40	0 - 2,5; 0 - 5; 0 - 10; 0 - 20;	
		· · · · · · · · · · · · · · · · · · ·					0 - 10, 0 - 20;	
		- на длинах волн 1310/1550 нм:					о - 40 км, - на длинах волн	
		0 - 1,25; 0 - 2,5;					1310/1550 нм:	
		0 - 1,25, 0 - 2,5,					0 - 1,25; 0 - 2,5;	
		0 - 40; 0 - 80;					0 - 5; 0 - 10;	
		0 - 160; 0 - 260					0 - 20; 0 - 40;	
							0 - 80; 0 - 160;	
							0 - 260	
Пределы допускаемой абсолютной погрешности измерений ослабления,								
дБ/дБ	±0,03							
Пределы допускаемой		±0,03						
абсолютной погрешности								
измерений длины, м			$DL = \pm$	$(0.75 + 2.5 \cdot 10^{-5} \cdot L + d)$	**			
* * * * * * * * * * * * * * * * * * * *	_(0,10 + 2,0 10 11 4)							

^{*} Динамический диапазон - разность (в дБ) между уровнем сигнала, рассеянного от ближнего к системе конца измеряемого оптического кабеля, и уровнем шумов, равным 98 % от максимума шумов в последней четверти установленного диапазона длин.

^{**} L - измеряемая длина, м; d - дискретность отсчета (зависит от измеряемой длины), м.

Таблица 4 - Метрологические характеристики систем со сменными модулями оптического рефлектометра серий FTB-7300x

Модификация модуля	FTB-7300E-	FTB-7300E-000-	FTB-7300E-	FTB-7300E-	FTB-7300E-	FTB-7300E-	FTB-7300E-
оптического рефлектометра серии FTB-7300x	023B	04B	034B	234B	236B	023B-04B	023B-08B
Тип волокна	Одномодовое 9/125 мкм						
Рабочие длины волн, нм	(1310/1550)±20	1625±10	1550±20;	(1310/1550)±20	(1310/1550)±20	(1310/1550)±20	(1310/1550)±20
		(с фильтром)	1625±10	1625±10	1490±10	1625±10 (с фильтром)	1650±7 (с фильтром)
Динамический диапазон измерений ослабления (при усреднении 3 мин, по уровню 98 % от максимума шумов, при длительности импульса 20 мкс)*, дБ	39 / 37	39	37/39	39/37/39	39 /37 / 35	39/37/39	39/37/37
Мертвая зона при измерении, м:							
- ослабления	4 / 4,5	4,5	4,5 / 4,5	4/4,5/4,5	4 / 4,5 / 4,5	4 / 4,5 / 4,5	4/4,5/4,5
- положения неоднородности	0,8 / 0,8	0,8	0,8 / 0,8	0,8 / 0,8 / 0,8	0,8 / 0,8 / 0,8	0,8 / 0,8 / 0,8	0,8/0,8/0,8
Длительность зондирующих							
импульсов, нс				275; 500; 1000; 250	•		
Диапазоны измеряемых длин, км		0 - 1,25; 0 - 2,5; 0 - 5; 0 - 10; 0 - 20; 0 - 40; 0 - 80; 0 - 160; 0 - 260; 0 - 400					
Пределы допускаемой абсолютной							
погрешности измерений ослабле-							
ния, дБ/дБ	±0,03						
Пределы допускаемой абсолютной							
погрешности измерений длины, м			DL =	$\pm (0.75+10^{-5}\cdot L+d)*$	*		

^{*} Динамический диапазон - разность (в дБ) между уровнем сигнала, рассеянного от ближнего к системе конца измеряемого оптического кабеля, и уровнем шумов, равным 98 % от максимума шумов в последней четверти установленного диапазона длин.

^{**} L - измеряемая длина, м; d - дискретность отсчета (зависит от измеряемой длины), м.

Таблица 5 - Метрологические характеристики систем со сменными модулями оптического рефлектометра серий FTB-7400x, FTB-7500x, FTB-7600x

оптического рефлектометра серий FTB-7400x, FTB-7500x, FTB-7600x		FTB-7400E- 0234B (1310/1550)±20;	FTB-7400E- 2347B	FTB-7500E- 0023B	FTB-7500E- 0034B	FTB-7600E- 023B	FTB-7600E-034B				
серий FTB-7400x, FTB-7500x, FTB-7600x Тип волокна					003 12	0232					
FTB-7600х Тип волокна	1310/1550)±20	(1210/1550) 120	C	0/107							
Тип волокна	1310/1550)±20	(1210/1550) 20	C	0.427			1				
Рабочие ллины волн. нм (1	1310/1550)±20	(1210/1550) 120		Одномодовое 9/125 мкм							
	1310/1330)±20	((1310/1550)±20;	(1310/1550)±20;	1550±20;	(1310/1550)±20	1550±20;				
		1625±10	1383±1;	(1310/1330)=20,	1625±10	(1310/1330)=20	1625±10				
		1023±10	1625±10		1023±10		1023±10				
Динамический диапазон 42 измерений ослабления (при усреднении 3 мин, по уровню	12 /41	42 /41/41	42/41/40/41	45/45	45/45	50 /50	50 /48				
98 % от максимума шумов, при длительности импульса 20 мкс)*, дБ											
Мертвая зона при измерении,											
M:											
- ослабления 4	1/4,5	4 /4,5/4,5	4 /4,5 /4 /4,5	4/4,5	4,5 /4,5	5 /5	5 /5				
- положения неоднородности 0,	0,8/0,8	0,8/0,8	0,8/0,8	0,8 /0,8	0,8 /0,8	1 /1,5	1,5 /1				
Длительность зондирующих	· · · · · ·			· · · · ·		<u> </u>					
импульсов, нс			5; 10; 30; 1	00; 275; 1000; 2500;	10000; 20000						
Диапазоны измерений дли-	-, -,,,,,,										
ны, км	0 - 1,25; 0 - 2,5; 0 - 5; 0 - 10; 0 - 20; 0 - 40; 0 - 80; 0 - 160; 0 - 260; 0 - 400										
Пределы допускаемой абсо-											
лютной погрешности измере-											
ний ослабления, дБ/дБ	±0,03										
Пределы допускаемой аб-											
солютной погрешности из-											
мерений длины, м				$DL = \pm (0.75 + 10^{-5} \cdot L + 0^{-5})$	1)**						

^{*} Динамический диапазон - разность (в дБ) между уровнем сигнала, рассеянного от ближнего к системе конца измеряемого оптического кабеля, и уровнем шумов, равным 98 % от максимума шумов в последней четверти установленного диапазона длин.

^{**} L - измеряемая длина, м; d - дискретность отсчета (зависит от измеряемой длины), м.

Таблица 6 - Метрологические характеристики систем со сменными модулями оптического рефлектометра серий FTBx-730C

Модификация модуля	FTBx-730C-SM1	FTBx-730C-SM2	FTBx-730C-SM3	FTBx-730C-SM6	FTBx-730C-SM7	FTBx-730C-SM8		
оптического рефлектометра	11DX-730C-5W11	1 1 DX-7 50C-51V12	1 1 DX-7 30C-51V13	11DX-750C-5W10	1 1DX-750C-5W17	1 1 DX-730C-51110		
серии FTBx-730C								
Тип волокна	Одномодовое 9/125 мкм							
Рабочие длины волн, нм	(1310/1550)±20	(1310/1550)±20;	(1310/1550)±20;	1625±10	1650±5	(1310/1550)±20		
		1625±10	1625±10	(с фильтром)	(с фильтром)	1650±5		
		(с фильтром)				(с фильтром)		
Динамический диапазон измерений	37 / 36	37/36/37	37 / 36 / 37	37	37	37/36/37		
ослабления (при усреднении 3 мин,								
по уровню 98 % от максимума								
шумов, при длительности импульса								
20 мкс)*, дБ								
Мертвая зона при измерении, м:								
- ослабления	2,5 / 2,5	2,5 / 2,5 / 2,5	2,5 / 2,5 / 2,5	2,5	2,5	2,5 / 2,5 / 2,5		
- положения неоднородности	0,6/0,6	0,6/0,6/0,6	0,6/0,6/0,6	0,6	0,6	0,6/0,6/0,6		
Длительность зондирующих								
импульсов, нс		5; 1	0; 30; 50; 100; 275; 500;	1000; 2500; 10000; 20	000			
Диапазоны измеряемых длин, км	0 - 1,25; 0 - 2,5; 0 - 5; 0 - 10; 0 - 20; 0 - 40; 0 - 80; 0 - 160; 0 - 260; 0 - 400							
Пределы допускаемой абсолютной								
погрешности измерений ослабле-								
ния, дБ/дБ	±0,03							
Пределы допускаемой абсолютной								
погрешности измерений длины, м			$DL = \pm (0.75 + 2.5)$	5·10 ⁻⁵ ·L+ d)**				

^{*} Динамический диапазон - разность (в дБ) между уровнем сигнала, рассеянного от ближнего к системе конца измеряемого оптического кабеля, и уровнем шумов, равным 98 % от максимума шумов в последней четверти установленного диапазона длин.

^{**} L - измеряемая длина, м; d - дискретность отсчета (зависит от измеряемой длины), м.

Таблица 7 - Метрологические характеристики систем со сменными модулями оптического рефлектометра серий FTBx-735C, FTBx-740C, FTBx-750C

Модификация модуля	FTBx-735C-	FTBx-735C-	FTBx-735C-	FTBx-735C-	FTBx-740C-DWC	FTBx-750C-	FTBx-750C-
оптического рефлектометра	SM1	SM2	SM3	SM4		SM1	SM3
серии FTBx-735C, FTBx-740C,							
FTBx-750C							
Тип волокна		Одномодовое 9/125 мкм					
Рабочие длины волн, нм	(1310/1550)±20	(1310/1550)±20;	(1310/1550)±20;	(1310/1490/	Перестраиваемые	(1310/1550)±20	(1310/1550)±20
		1625±10	1625±10	$1550)\pm 20$	в диапазоне от		1625±10
		(с фильтром)			1528,77 до 1563,86		
Динамический диапазон	40/39	40/39/39	40/39/39	40/39/39	40	44 / 44	43 / 43 / 43
измерений ослабления (при							
усреднении 3 мин,							
по уровню 98 % от максимума							
шумов, при длительности							
импульса 20 мкс)*, дБ							
Мертвая зона при измерении, м:							
- ослабления	2,5 / 2,5	2,5 / 2,5 / 2,5	2,5 / 2,5 / 2,5	2,5 / 2,5 / 2,5	4	2,5 / 2,5	2,5 / 2,5 / 2,5
- положения неоднородности	0,6/0,6	0,6/0,6/0,6	0,6/0,6/0,6	0,6/0,6/0,6	0,8	0,6/0,6	0,6/0,6/0,6
Длительность зондирующих							
импульсов, нс					2500; 10000; 20000		
Диапазоны измеряемых длин, км	0 - 1,25; 0 - 2,5; 0 - 5; 0 - 10; 0 - 20; 0 - 40; 0 - 80; 0 - 160; 0 - 260; 0 - 400						
Пределы допускаемой абсолют-							
ной погрешности измерений ос-							
лабления, дБ/дБ	±0,03						
Пределы допускаемой абсолют-							
ной погрешности измерений				_			
длины, м			DL=±	$(0,75+2,5\cdot10^{-5}\cdot L)$	+ d)**		

^{*} Динамический диапазон - разность (в дБ) между уровнем сигнала, рассеянного от ближнего к системе конца измеряемого оптического кабеля, и уровнем шумов, равным 98 % от максимума шумов в последней четверти установленного диапазона длин.

^{**} L - измеряемая длина, м; d - дискретность отсчета (зависит от измеряемой длины), м.

Таблица 8 - Метрологические характеристики систем со сменными модулями оптического

анализатора спектра FTB-5230, FTB-5240

	FTB-5240S/S-P	FTB-5230S/S-OCA
Тип используемого волокна	одномодово	е, 9/125 мкм
Диапазон измерений длины волны, нм	от 1250	до 1650
Пределы допускаемой абсолютной по-		
грешности измерений длины волны, нм	±0	,05
Максимальная разрешающая способность		
по шкале длин волн, нм	0,065	0,100
Диапазон отображаемого значения уров-	от +18 до -80	от +23 до -65
ня средней мощности излучения, дБм1)	от +23 до -70 (с оп-	
	цией HPW ²⁾)	
Пределы допускаемой абсолютной по-		
грешности измерений уровня средней		
мощности оптического излучения ³⁾ , дБ	±0,5	±0,6

⁽дБм) обозначает (дБ) относительно 1 мВт ²⁾ Опция порта высокой мощности

Таблица 9 - Метрологические характеристики систем со сменными модулями анализатора ХД/ПМД FTB-5700

Рабочий спектральный диапазон, нм	от 1475 до 1626
Пределы допускаемой абсолютной погрешности измерений ХД	
(на длине волны 1550 нм, при длине оптического волокна типа	
G.652 до 100 км), пс/нм	±10
Диапазон измерений ПМД (для оптического волокна длиной	
³ 100 м, в диапазоне длин волн от 1500 до 1575 нм), пс	
	от 0,1 до 20,0
Пределы допускаемой абсолютной погрешности измерений	$\pm (0.05 \cdot D + 0.2);$
ПМД в диапазоне длин волн от 1500 до 1575 нм (для ПМД с	D - измеренная ПМД,
сильной связью мод), пс	пс
Диапазон измерений длины (расстояния), км	от 0,1 до 120,0
Пределы допускаемой абсолютной погрешности измерений	$\pm (0.01+0.01\cdot L),$
длины, м	L- измеренная длина,
	M

Таблица 10 - Метрологические характеристики систем со сменными модулями анализатора цифровых линий связи FTB-8805, FTBx-8870 (в части функционала E1/2M), FTBx-8880

Электрические интерфейсы PDH/SDH					
Номинальные значения тактовой частоты формируе-					
мых сигналов, МГц:					
- E1/2M (RJ-48C), E1/2M (BNC)	2,048				
- E3/34M	34,368				
- STM-0e/52M	51,840				
- E4/140M	139,264				
- STM-1e/155M	155,520				
Пределы допускаемой относительной погрешности	±4,6×10 ⁻⁶				
установки тактовой частоты формируемых сигналов					

³⁾ На длине волны 1,55 мкм, при уровне входной мощности минус 10 дБм.

Продолжение таблицы 10

Пределы допускаемого отклонения тактовой частоты	
входного сигнала относительно номинальных такто-	
вых частот передатчика	±100×10 ⁻⁶
Пределы допускаемой относительной погрешности	
измерений частоты	±4,6×10 ⁻⁶
Номинальные значения амплитуды формируемых	
сигналов, В:	
- E1/2M (RJ-48C)	3,00 (при нагрузке 120 Ом)
- E1/2M (BNC)	2,37 (при нагрузке 75 Ом)
- E3/34M	1,00
- E4/140M	1,00
- STM-1e/155M	0,50
Пределы допускаемого отклонения установки ампли-	
туды формируемых сигналов, %	±10
Номинальные значения длительности формируемых	
сигналов, в зависимости от типа формируемого сиг-	
нала, нс:	
- E1/2M (RJ-48C), E1/2M (BNC)	244,000
- E3/34M	14,550
- E4/140M	3,590
- STM-1e/155M	3,216
Пределы допускаемого отклонения установки дли-	
тельности формируемых сигналов, в зависимости от	
типа формируемого сигнала, нс:	
- E1/2M (RJ-48C), E1/2M (BNC)	$\pm 25,00$
- E3/34M	±2,45
- E4/140M	± 0.10
- STM-1e/155M	±0,10

Таблица 11 - Метрологические характеристики систем со сменными модулями анализатора цифровых линий связи FTB-8830NGE, FTBx-8870, FTBx-8880, FTB-88100NGE, FTBx-88200NGE

Оптические интерфейсы SDH (интерфейсы до 10 G)		
Номинальные тактовые частоты передатчика		
- STM-0	51,84000 МГц;	
- STM-1	155,52000 МГц;	
- STM-4	622,08000 МГц;	
- STM-16	2,48832 ГГц;	
- STM-64	9,95328 ГГц	
Пределы допускаемой относительной погрешности		
тактовой частоты передатчика	±4,6×10 ⁻⁶	
Пределы допускаемого отклонения тактовой час-		
тоты входного сигнала относительно номинальных		
тактовых частот передатчика	±100×10 ⁻⁶	
Сдвиг тактовой частоты передатчика от номиналь-		
ных тактовых частот передатчика	±50×10 ⁻⁶	
Пределы допускаемой относительной погрешности		
измерений частоты сигнала	±4,6×10 ⁻⁶	
Пределы допускаемой относительной погрешности		
измерений уровня средней мощности оптического	±2	
излучения, дБ		

Электрические интерфейсы Ethernet		
Номинальные тактовые частоты передатчика		
- 10 Base-T	10 МГц;	
- 100 Base-T	125 МГц;	
- 1000 Base-T	1 ГГц	
Пределы допускаемой относительной погрешности		
тактовой частоты передатчика	±4,6×10 ⁻⁶	
Пределы допускаемой относительной погрешности		
измерений частоты сигнала*	±4,6×10 ⁻⁶	
Оптические интерфейсы Ethernet (интерфейсы до 10 G)		
Номинальные тактовые частоты передатчика	125 МГц;	
	1,2500; 9,9530; 10,3125 ГГц	
Пределы допускаемой относительной погрешности		
тактовой частоты передатчика	±4,6×10 ⁻⁶	
Пределы допускаемой относительной погрешности		
измерений частоты сигнала	±4,6×10 ⁻⁶	
* Не нормируется для номинальной тактовой частоты передатчика 10 МГц.		

Таблица 12 - Метрологические характеристики приемопередатчиков систем со сменными модулями анализатора цифровых линий связи FTB-8830NGE, FTBx-8870, FTBx-8880, FTB-88100NGE, FTBx-88200NGE (интерфейсы до 10 G)

Тип	Тип	Номинальная	Уровень	Диапазон измере-
приемопере-	интерфейса	рабочая длина	выходной	ний средней
датчиков		волны, нм	мощности	мощности опти-
			передатчика,	ческого излуче-
			дБм	ния (рабочий
				диапазон уровня
				мощности прием-
				ника) либо мини-
				мальная чувстви-
				тельность прием-
				ника, дБм
FTB-8190	STM-1	1310	от -20 до 0	от -23 до -10
	STM-4		от -5 до 0	от -22 до 0
	STM-16		от -5 до 0	от -18 до 0
	1000 BASE-		от -9 до -3	-22
	LX			
FTB-8191	STM-1	1310	от -2 до +3	от -30 до -15
	STM-4		от -2 до +3	от -27 до -9
	STM-16		от -2 до +3	от -27 до -9
FTB-8192	STM-1	1550	от -2 до +3	от -30 до -15
	STM-4		от -2 до +3	от -29 до -9
	STM-16		от -2 до +3	от -28 до -9
	1000 BASE-		от 0 до -5	-22
	ZX			
FTB-8193	STM-1	1550	от -5 до 0	от -23 до -10
	STM-4		от -5 до 0	от -22 до 0
	STM-16		от -5 до 0	от -18 до 0

Тип приемопере- датчиков	Тип интерфейса	Номинальная рабочая длина волны, нм	Уровень выходной мощности передатчика, дБм	Диапазон измерений средней мощности оптического излучения (рабочий диапазон уровня мощности приемника) либо мини-
				мальная чувстви- тельность прием- ника, дБм
FTB-85910	STM-0, 100 BASE-FX	1310	от -20 до -15	-31
FTB-85911	100 BASE-LX	1310	от -15 до -8	-28
FTB-8596	1000 BASE- BX10-D	на передаче 1490; на приеме 1310	от -9 до -3	-20
FTB-8597	1000 BASE- BX10-U	на передаче 1310; на приеме 1490	от -9 до -3	-20
FTB-8690	10G BASE-SR/ SW	850	от -5 до -1	от -11 до 0
FTB-8691	10G BASE- LR/ LW	1310	от -8 до 0	от -14 до 0
FTB-8692	10G BASE- ER/EW	1550	от -4 до +4	от -15 до -1
FTB-8693	STM-64/OTU2	1310	от -6 до -1	от -11 до 0
FTB-8694		1550	от -4 до +4	от -15 до -1
FTB-8695		1550	от 0 до +4	от -24 до -7
FTB-85900*	10GBASE- SR/SW	850	от -5 до -1	от -11 до 0
FTB-85901*	10G BASE- LR/LW	1550	от -6 до 0	от -12 до 0
FTB-85902*	10G BASE- ER/EW	1550	от -1 до +2	от -16 до -1
FTB-81900*	STM-64/OTU2	1310	от -6 до -1	от -13 до 0
FTB-81901*		1550	от -1 до +2	от -15 до -1
FTB-81902*		1550	от 0 до +4	от -22 до -7
* Интерфейс под	ддерживается тол	ько модулями FTB	-8830NGE, FTB-88	100NGE

Таблица 13 - Метрологические характеристики систем со сменными модулями анализаторов цифровых линий связи FTB-88100G, FTB-88100NGE, FTBx-88200NGE (интерфейсы 40 и 100 G)

Наименование характеристики	Значение
Система оптическая измерительная FTB-2 Pro	при ее комплектовании модулем
FTB-88100G	
Полная скорость передачи в волоконной линии на	
всех спектральных линиях на стыке Ethernet,	41,250 (на интерфейсе 40G) и
справочное значение, Гбит/с	103,125 (на интерфейсе 100G)

Наименование характеристики	Значение
Рабочий спектральный диапазон (в зависимости	911W 1411114
от оптического интерфейса), нм:	
- для FTB-85951, FTB-85953	от 1521,00 до 1597,00
- для FTB-85955, FTB-85958, CFP2-85975, CFP2-	от 10 21,00 до 10 у 1,00
85978	от 1294,53 до 1310,19
- для FTB-85956	от 1264,50 до 1337,50
- для FTB-85960	от 1530,00 до 1565,00
- для CFP2-85974	от 840,00 до 860,00
Уровень выходной мощности на каждой спек-	, ,,
тральной линии, дБм:	
- для FTB-85951	от -5,8 до +3,5
- для FTB-85953	от -6,9 до +3,5
- для FTB-85955, FTB-85958	от -2,5 до +2,9
- для FTB-85956	от -2,3 до +2,3
- для FTB-85960 ¹⁾	от 0 до +3,0
- для CFP2-85974	от -7,6 до -1,0
- для CFP2-85975	от -2,5 до +2,9
- для CFP2-85978	от -4,3 до +4,5
Диапазон измерений средней мощности оптиче-	
ского излучения (рабочий диапазон уровня мощ-	
ности приемника) на каждой спектральной линии,	
дБм:	
- для FTB-85951	от -10,8 до +3,5
- для FTB-85953	от -9,5 до +3,5
- для FTB-85955	от -10,3 до +4,5
- для FTB-85956	от -13,7 до +2,3
- для FTB-85958	от -8,8 до +2,9
- для FTB-85960	от -7,0 до +3,0
- для CFP2-85974	от -9,5 до +2,4
- для CFP2-85975	от -2,5 до +2,9
- для CFP2-85978	от -10,6 до +4,5
Пределы допускаемой абсолютной погрешности	
измерений средней мощности оптического излу-	
чения, дБ	±2
Номинальные значения тактовых частот на одной	
спектральной линии в передающем и приемном	
каналах, ГГц:	10.21250
- для интерфейса CFP2-85974	10,31250
- для интерфейса FTB-85951, FTB-85953, CFP2-	10 21250 / 11 19100
85975, CFP2-85978	10,31250 / 11,18100 25,78125 / 27,95249
- для интерфейса FTB-85955, FTB-85958 - для интерфейса FTB-85956	25,78123 / 27,93249 10,31250/10,75460/11,14270/11,14580
- для интерфеиса FTB-85956 - для интерфейса FTB-85957	25,78125
- для интерфеиса FTB-85957 - для интерфейса FTB-85960	39,80000
* *	39,00000
Диапазон допускаемого отклонения тактовой частоты входного сигнала	±100×10 ⁻⁶
тастоты влидниги сигнала	

 $^{\rm 1)}\,{\rm CFP}-$ модуль типа FTB-85960 использует одну спектральную линию.

Наименование характеристики	Значение
	Эначение
Сдвиг тактовой частоты передатчика от номи-	
нальных тактовых частот на одной спектральной	150·10 ⁻⁶
линии в передающем канале	±50×10 ⁻⁶
Пределы допускаемой относительной погрешно-	
сти тактовой частоты передатчика	±4,6×10 ⁻⁶
Пределы допускаемой относительной погрешно-	
сти измерений частоты входного сигнала	±4,6×10 ⁻⁶
Система оптическая измерительная FTB-2 Pro	
FTB-88100NGE, FTBx-8	38200NGE
С использованием интерфейса т	ипа CFP или CFP2
Полная скорость передачи в волоконной линии на	
всех спектральных линиях на стыке Ethernet,	41,250 (на интерфейсе 40G) и
справочное значение, Гбит/с	103,125 (на интерфейсе 100G)
Рабочий спектральный диапазон (в зависимости	
от оптического интерфейса), нм:	
- для FTB-85951, FTB-85953	от 1521,00 до 1597,00
- для FTB-85955, FTB-85958, CFP2-85975, CFP2-	
85978	от 1294,53 до 1310,19
- для FTB-85956	от 1264,50 до 1337,50
- для FTB-85960	от 1530,00 до 1565,00
- для CFP2-85974	от 840,00 до 860,00
Уровень выходной мощности на каждой спек-	
тральной линии, дБм:	
- для FTB-85951	от -5,8 до +3,5
- для FTB-85953	от -6,9 до +3,5
- для FTB-85955, FTB-85958	от -2,5 до +2,9
- для FTB-85956	от -2,3 до +2,3
- для FTB-85960	от 0 до +3,0
- для CFP2-85974	от -7,6 до -1,0
- для CFP2-85975	от -2,5 до +2,9
- для CFP2-85978	от -4,3 до +4,5
Диапазон измерений средней мощности оптиче-	
ского излучения (рабочий диапазон уровня мощ-	
ности приемника) на каждой спектральной линии,	
дБм:	
- для FTB-85951	от -10,8 до +3,5
- для FTB-85953	от -9,5 до +3,5
- для FTB-85955	от -10,3 до +4,5
- для FTB-85956	от -13,7 до +2,3
- для FTB-85958	от -8,8 до +2,9
- для FTB-85960	от -7,0 до +3,0
- для CFP2-85974	от -9,5 до +2,4
- для CFP2-85975	от -2,5 до +2,9
- для CFP2-85978	от -10,6 до +4,5
Пределы допускаемой абсолютной погрешности	
измерений уровня средней мощности оптического	
излучения, дБ	±2
•	

Наименование характеристики	Значение
Номинальные значения тактовых частот на одной	
спектральной линии в передающем и приемном	
каналах, ГГц:	
- для интерфейса CFP2-85974	10,31250
- для интерфейса FTB-85951, FTB-85953, CFP2-	
85975, CFP2-85978	10,31250 / 11,18100
- для интерфейса FTB-85955, FTB-85958	25,78125 / 27,95249
- для интерфейса FTB-85956	10,31250/10,75460/11,14270/11,14580
- для интерфейса FTB-85957	25,78125
- для интерфейса FTB-85960	39,80000
Диапазон допускаемого отклонения тактовой час-	
тоты входного сигнала	±100×10 ⁻⁶
Сдвиг тактовой частоты передатчика от номи-	
нальных тактовых частот передатчика	±50×10 ⁻⁶
Пределы допускаемой относительной погрешно-	
сти тактовой частоты передатчика	±4,6×10 ⁻⁶
Пределы допускаемой относительной погрешно-	
сти измерений частоты входного сигнала	±4,6×10 ⁻⁶

Таблица 14 - Метрологические характеристики систем со сменными модулями универсального тестового модуля FTB-3930 (в части измерителей оптической мощности)

тестового модули г тв-3/30 (в части изме	рителен өшти теск	он мощности)	
	Значение характеристики для модулей		я модулей
	FTB-3932,	FTB-3932X,	FTB-3933,
Наименование характеристики	FTB-3932-4,	FTB-3932X-4,	FTB-3933-4,
	FTB-3932-5,	FTB-3932X-5,	FTB-3933-5,
	FTB-3932-12C,	FTB-3932X-12C,	FTB-3933-12C,
	FTB-3932-12D	FTB-3932X-12D	FTB-3933-12D
Рабочий диапазон длин волн, нм		от 800 до 1650	
Диапазон измерений от 800 до уровня оптической 1200 включ.	от -60 до +10	от -55 до +20	от -65 до +6
мощности, дБм, в св. 1200 до диапазоне длин волн, нм 1650 включ.	от -65 до +10	от -55 до +20	от -70 до +6
Пределы допускаемой относительной			
погрешности измерений уровня средней	æ, , 0,4 ö,	$\pm \overset{\text{æ}}{c}0,3 + \frac{12}{A}\overset{\text{o}}{\overset{\text{o}}{c}}$	æ 2 + 0,2 ö
мощности оптического излучения на	$\pm \zeta 0.5 + \longrightarrow \div$	$\pm 0.5 + -\div$	$\pm \zeta 0,3 + \longrightarrow \div$
длинах волн градуировки, дБ	C 11 0	6 110	G 11 Ø
Длины волн градуировки, нм	850, 1300, 1310, 1490, 1550, 1625		0, 1625
Диапазон измерений уровня обратных			
потерь, дБ		от 0 до 50	
Пределы допускаемой абсолютной			
погрешности измерений уровня обратных			
потерь, дБ	±1,0		
* Здесь и далее А обозначает измеренно	* Здесь и далее A обозначает измеренное значение мощности в нВт: $A = 10^{0.1P+6}$, где P -		

^{*} Здесь и далее A обозначает измеренное значение мощности в нВт: $A = 10^{\circ, 11-\circ}$, где P - измеренное значение уровня мощности в дБм

Таблица 15 - Метрологические характеристики систем со сменными модулями универсального

тестового модуля FTB-3930 (в части источников оптического излучения)

Teerebere megyim 112 3733			Модель	,	
Характеристика	FTB-3932, FTB-3932X, FTB-3933	FTB-3932-4, FTB-3932X- 4, FTB-3933-4	FTB-3932-5, FTB-3932X- 5, FTB-3933-5	FTB-3932- 12C, FTB- 3932X-12C, FTB-3933- 12C	FTB-3932- 12D, FTB- 3932X-12D, FTB-3933- 12D
Длины волн излучения, нм	1310±20 1550±20	1310±20 1550±20 1625±10	1310±20 1490±10 1550±20	850±25 1325±25	850±25 1325±25
Уровень мощности в непрерывном режиме, дБм, не менее	-1	-7	-7	-27	-21
Нестабильность уровня мощности излучения за 15 минут (после 15 минут прогрева), дБ, не более			±0,05		

Таблица 16 - Метрологические характеристики встроенных измерителей средней мощности оптического излучения систем

entil reciter e monty remains enterem	
Наименование характеристики	Значение характеристики
Длины волн градуировки, мкм	850, 1300, 1310, 1490, 1550, 1625
Диапазон измерений уровня оптической	
мощности, дБм	от -50 до +27
Пределы допускаемой относительной	
погрешности измерений уровня средней	
мощности оптического излучения (на	20 AO Ö
длинах волн градуировки 850, 1300, 1310,	$\pm \overset{\text{æ}}{\overset{\text{c}}}{\overset{\text{c}}{\overset{\text{c}}{\overset{\text{c}}{\overset{\text{c}}{\overset{\text{c}}{\overset{\text{c}}{\overset{\text{c}}}{\overset{\text{c}}{\overset{\text{c}}{\overset{\text{c}}{\overset{\text{c}}{\overset{\text{c}}{\overset{\text{c}}{\overset{\text{c}}{\overset{\text{c}}{\overset{\text{c}}}{\overset{\text{c}}{\overset{\text{c}}{\overset{\text{c}}{\overset{\text{c}}{\overset{\text{c}}{\overset{\text{c}}}{\overset{\text{c}}{\overset{\text{c}}{\overset{\text{c}}{\overset{\text{c}}}{\overset{\text{c}}}{\overset{\text{c}}}{\overset{\text{c}}}{\overset{\text{c}}}{\overset{\text{c}}}{\overset{\text{c}}}{\overset{\text{c}}}{\overset{\text{c}}}{\overset{\text{c}}}}{\overset{\text{c}}{\overset{\text{c}}}{\overset{\text{c}}{\overset{\text{c}}{\overset{\text{c}}{\overset{\text{c}}}{\overset{\text{c}}}{\overset{\text{c}}{\overset{\text{c}}}{\overset{\text{c}}}{\overset{\text{c}}}}{\overset{\text{c}}{\overset{\text{c}}}{\overset{\text{c}}{\overset{\text{c}}}{\overset{\text{c}}{\overset{\text{c}}{\overset{c}}}{\overset{c}}}{\overset{c}}}{\overset{c}}{\overset{c}}{\overset{c}}{\overset{c}}}}{\overset{c}}{\overset{c}}{\overset{c}}{\overset{c}}}{\overset{c}}{\overset{c}}{\overset{c}}{\overset{c}}{\overset{c}}}{\overset{c}}}{\overset{c}}{\overset{c}}{\overset{c}}{\overset{c}}}{\overset{c}}}{\overset{c}}{\overset{c}}{\overset{c}}{\overset{c}}}{\overset{c}}}}}}}}$
1490, 1550, 1625 нм), дБ	e Aø

Таблица 17 - Основные технические характеристики систем

Наименование характеристики	Значение
Электропитание осуществляется от сети переменного	
тока через блок питания:	
- напряжением, В	220±20
- частотой, Гц	55±5
Габаритные размеры, мм, не более	
- высота	199
- ширина	333
- глубина	119
Масса платформы без учета аккумуляторов и модулей,	
кг, не более	3
Условия эксплуатации:	
Температура окружающей среды, °С	от 0 до +50
Относительная влажность воздуха (без конденсата), %,	
не более	95

Знак утверждения типа

наносится на титульный лист Руководства по эксплуатации типографским способом и на заднюю панель корпуса систем методом наклеивания.

Комплектность средства измерений

Таблица 18 - Комплектность средства измерений

Наименование	Количество
Система оптическая измерительная FTB-2 (Pro)	1 шт.
Сменный модуль*	1 или 2 шт.
Сетевой адаптер	1 шт.
Руководство по эксплуатации	1 экз.
Методика поверки	1 экз.
* Поставляется по требованию заказчика.	

Поверка

осуществляется по документу МП 049. Φ 3-16 «Государственная система обеспечения единства измерений. Системы оптические измерительные FTB-2 (Pro). Методика поверки», утвержденному Φ ГУП «ВНИИО Φ И» 12 декабря 2016 года.

Основные средства поверки:

1 Государственный рабочий эталон единицы средней мощности оптического излучения в волоконно-оптических системах передачи в диапазоне от 10^{-11} до 10^{-2} на длинах волн от 500 до 1700 нм.

Основные метрологические характеристики:

Диапазон измеряемой средней мощности оптического излучения: от 10^{-11} до 10^{-2} Вт. Длины волн градуировки измерителя мощности (длины волн излучения источников): 632,8; 840 - 860; 1064; 1300 - 1320; 1540 - 1560; 1485 - 1495; 1620 - 1630 нм. Пределы допускаемой относительной погрешности измерений средней мощности оптического излучения на длинах волн градуировки в диапазоне от 10^{-11} до $2 \cdot 10^{-3}$ включительно: $\pm 2,5$ %; в диапазоне от 10^{-3} до 10^{-2} Вт включительно: $\pm 3,5$ %. Пределы допускаемой относительной погрешности измерений средней мощности оптического излучения в рабочем спектральном диапазоне: ± 5 %.

2 Государственный рабочий эталон единиц длины и ослабления в световоде в диапазонах воспроизведения от 0,06 до 600 км и от 0,5 до 20,0 дБ.

Основные метрологические характеристики:

Диапазон воспроизведения длины (расстояния) до мест неоднородностей в оптическом волокне от 0.06 до 500 км, пределы допускаемой абсолютной погрешности воспроизведения длины (расстояния) до мест неоднородностей в оптическом волокне $\pm (0.15 + 5 \cdot 10^{-6} L)$ м, где L - воспроизводимая длина, м; диапазон воспроизведения значений ослабления оптического излучения от 0.5 до 40 дБ, пределы допускаемой абсолютной погрешности измерений ослабления оптического излучения: $\pm 0.015 \cdot A$, где A - измеряемое ослабление, дБ.

3 Осциллограф цифровой запоминающий WaveSurfer 422

Основные метрологические характеристики:

Полоса пропускания 200 МГц. Диапазон коэффициента отклонения: от 1 мВ/дел до 1 В/дел (на нагрузке 50 Ом), от 1 мВ/дел до 10 В/дел (на нагрузке 1 Мом). Пределы допускаемого значения абсолютной погрешности измерений напряжения: $\pm (1,5\cdot 10^{-2}\cdot U+0,5\cdot 10^{-2}\cdot 8\cdot K_0)$, где U - измеряемое напряжение, K - установленный коэффициент отклонения.

4 Государственный рабочий эталон единицы длины волны для волоконно-оптических систем передачи информации в диапазоне воспроизведения от 600 до 1650 нм.

Основные метрологические характеристики:

Длины волн лазерных источников излучения 1310 ± 10 , 1550 ± 10 , 1625 ± 10 нм. Ширина спектра по уровню 0,5 (для 1550 нм) не более 1 пм. Средняя мощность оптического излучения не менее 1 мВт. Характеристики источника излучения на основе суперлюминесцентного диода и газонаполненной кюветы с ацетиленом (входят в состав рабочего эталона): средняя мощность оптического излучения не менее 50 мкВт, рабочий спектральный диапазон линий поглощения от 1510 до 1540 нм, пределы допускаемой относительной погрешности определения длин волн: $\pm 5\cdot 10^{-6}$ отн.ед.

5 Государственный рабочий эталон единицы хроматической дисперсии в диапазоне воспроизведения от минус 350 до плюс 350 пс/нм.

Основные метрологические характеристики:

Рабочие длины волн от 1260 до 1650 нм. Диапазон воспроизведения единицы XД: от минус 350 пс/нм до плюс 350 пс/нм. Границы допускаемой основной погрешности при воспроизведении единицы XД: ± 1 пс/нм.

6 Государственный рабочий эталон единицы поляризационной модовой дисперсии в диапазоне воспроизведения от 0,05 до 120 пс.

Основные метрологические характеристики:

Рабочие диапазоны длин волн: 1310 ± 10 , 1550 ± 10 нм. Диапазон воспроизведения единицы ПМД: от 0,05 до 120 пс. Границы допускаемой основной погрешности при воспроизведении единицы ПМД: \pm (0,012 пс + 0,005·A), где A - значение ПМД.

7 Система оптическая измерительная FTB-500 с модулем оптического анализатора спектра FTB-5240.

Основные метрологические характеристики:

Диапазон измерений длины волны: от 1250 до 1650 нм. Пределы допускаемой абсолютной погрешности измерений длины волны: ± 0.05 нм. Диапазон отображаемого значения уровня средней мощности излучения: от плюс 18 до минус 75 дБм. Пределы допускаемой абсолютной погрешности измерений уровня средней мощности оптического излучения (на длине волны 1.55 мкм, при уровне входной мощности минус 10 дБм): ± 0.4 дБ.

8 Частотомер универсальный CNT-90XL.

Основные метрологические характеристики:

Диапазон измеряемых частот: от 200 МГц до 40 ГГц.

Пределы допускаемой относительной погрешности измерений частоты при работе от внутреннего опорного генератора ОСХО 19/90, времени измерения 200 мс $2 \cdot 10^{-7}$.

9 Осциллограф 86100D с модулем 83496В.

Основные метрологические характеристики:

Тип каналов: дифференциальный и несимметричный электрический, одномодовый и многомодовый оптический. Диапазон входных данных: от 50 Мбит/с до 14,2 Гбит/с (опция 200). Выходное напряжение восстановленного сигнала на передней панели от 220 мВ до 1 В.

10 Генератор импульсов Г5-85

Основные метрологические характеристики:

Диапазон частот от 3 к Γ ц до 1 Γ Γ ц. Выходное напряжение от 0,2 до 2,0 В при RH=50 Ом. Регулируемая длительность основных импульсов от 1 нс до 200 мкс. Нерегулируемая длительность основных импульсов от 0,5 до 1 нс.

11 Государственный рабочий эталон обратных потерь в волоконно-оптических системах передачи информации в диапазоне от 5 до 50 дБ на длинах волн 1310 и 1550 нм.

Основные метрологические характеристики:

Диапазон измерений обратных потерь от 5 до 50 дБ. Длины волн калибровки (длины волн источника), фиксированные в диапазонах: от 1300 до 1320, от 1540 до 1560 нм. Пределы допускаемой абсолютной погрешности измерений обратных потерь: $\pm 0,5$ дБ.

Допускается применять не указанные в перечне средства поверки, обеспечивающие определение (контроль) метрологических характеристик с требуемой точностью.

Знак поверки наносится на заднюю панель базового блока системы, как показано на рисунке 2.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные документы, устанавливающие требования к системам оптическим измерительным FTB-2 (Pro)

- 1 ГОСТ 8.585-2013 «Государственная система обеспечения единства измерений. Государственная поверочная схема для средств измерений длины и времени распространения сигнала в световоде, средней мощности, ослабления и длины волны оптического излучения для волоконно-оптических систем связи и передачи информации».
- 2 ГОСТ Р 50.2.071-2009 «Государственная система обеспечения единства измерений. Рефлектометры оптические. Методика поверки».
- 3 ГОСТ Р 50.2.083-2013 «Государственная система обеспечения единства измерений. Средства измерений хроматической дисперсии в волоконно-оптических системах передачи. Методика поверки».
- 4 ГОСТ Р 50.2.086-2013 «Государственная система обеспечения единства измерений. Средства измерений поляризационной модовой дисперсии в волоконно-оптических системах передачи. Методика поверки».
- 5 ГОСТ Р 50.2.069-2009 «Государственная система обеспечения единства измерений. Спектроанализаторы оптические в волоконно-оптических системах передачи информации. Методика поверки»
- 6 ГОСТ Р 8.720-2010 «Государственная система обеспечения единства измерений. Измерители оптической мощности, источники оптического излучения, измерители обратных потерь и тестеры оптические малогабаритные в волоконно-оптических системах передачи. Методика поверки».

Изготовитель

Фирма «EXFO Inc.», Канада

Адрес: 400 Godin Avenue, Quebec City (Quebec), G1M 2K2 Canada

Телефон: +420 720 592 592; Факс: +420 602 558 480

E-mail: <u>vratislav.blazek@exfo.com</u>; Web-сайт: <u>www.exfo.com</u>

Заявитель

Закрытое акционерное общество «Концепт Технологии» (ЗАО «Концепт Технологии»)

Юридический адрес: 117574, г.Москва, Одоевского пр., д.3, корп.7, пом.ТАРП

Почтовый адрес: 108811, г.Москва, Киевское ш., 1-й км от МКАД, Бизнес Парк «Румянцево», блок «Б», подъезд 6, этаж 7, офис 701Б

Телефон: +7(495)775-31-75, факс: +7(495)775-31-75*109

E-mail: info@c-tt.ru, www.c-tt.ru

ИНН 7728545404

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт оптико-физических измерений»

Адрес: 119361, Москва, ул. Озерная, 46

Телефон: +7(495) 437-56-33; факс: +7(495) 437-31-47; E-mail: vniiofi@vniiofi.ru

Аттестат аккредитации Φ ГУП «ВНИИО Φ И» по проведению испытаний средств измерений в целях утверждения типа № 30003-14 от 23.06.2014 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев

М.п.	« »	2017 г